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Summary. It is widely known that shifts of cohort fertility schedule can produce
misleading trends in period TFR. This note shows that such a “tempo bias” can
occur in age-specific mortality as well: if the age distribution of cohort deaths shifts
toward older (younger) ages, the period age-specific death rate is biased downward
(upward).

1 Introduction

Relationships between “quantum” and “tempo” of demographic behavior are
crucial for understanding population dynamics, in particular, discrepancies
between demographic profiles of periods and cohorts. In this note, tempo
measures are defined as indicators of the location and shape of the age curve
of the given demographic behavior. Thus the first and higher moments of
the age curve are tempo measures. Quantum measures are based on the area
under the age curve, either over the entire life span or for a finite age range.
For example, the number of deaths is a function of age, the mean and variance
of age at death are tempo measures of the age curve, and the total number of
deaths and the crude death rate are quantum measures.

Changes in tempo and quantum of demographic behavior among cohorts
and over periods can produce trends that are misleading, apparently incon-
sistent, or difficult to interpret. Such trends may be considered biased or
distorted, even though the concept of the true value is not always clear. It is
widely known that shifts of cohort fertility schedule can produce misleading
trends in period TFR (Ryder 1956).

Bongaarts and Feeney (2002, in this volume p. 11) argue that tempo biases
occur in mortality as well. Using an artificial example, Feeney (2003, Figure
4) has demonstrated that cohort changes in the death distribution within
an age interval can distort the period death rate for the age interval. The
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example is essentially a straightforward conversion of their previous fertility
example (Bongaarts and Feeney 1998, Figure 2) from birth to death. It has
been developed for a special case that all deaths occur only at one point in
the age range and the point shifts linearly among cohorts.

The purpose of this note is to show that tempo effects can operate in mor-
tality, using a more general assumption about the shape and shift of death
distribution than Feeney’s hypothetical example. Sections 2 and 3 give a math-
ematical proof that if the age distribution of cohort deaths within an age in-
terval shifts toward older (younger) ages, the period number of deaths in the
age interval and, in turn, the age-specific death rate are biased downward (up-
ward). Section 2 discusses main points of the proof in an intuitive and visually
oriented way and Section 3 presents the inference in a formal manner. In ad-
dition, two hypothetical illustrations of mortality tempo effect by Bongaarts
and Feeney are examined in Appendix, with focus on their implications for
age-specific survival ratios.

2 Intuitive visual explanation

Two notions, which are familiar to demographers, are essential to the proof.
The first is the split of Lexis square into two triangles. Figure 1 shows a Lexis
diagram for the age interval between x and x + 1 over the time period from
t − 1 to t + 2. Time-age coordinates of six important points in Figure 1 are
as follows: A(t, x + 1), B(t + 1, x + 1), C(t + 2, x + 1), D(t − 1, x), E(t, x)
and F (t+ 1, x). We compare the number of deaths in the square ABFE (the
estimation period), that in the parallelogram ABED (the earlier cohort) and
that in BCFE (the later cohort). If both the number and the distribution of
deaths in the age interval are identical for the two cohorts and age-specific
deaths are evenly distributed over time within each cohort, the square ABFE
also has the same number of deaths as each parallelogram has.

Suppose that the number of deaths that occur between x and x + 1 is
identical for the two cohorts, but the distribution of those deaths within the
age interval is older in the later cohort. Then, at relatively young ages between
x and x+1, more deaths occur in the earlier cohort than in the later cohort; but
at relatively older ages in the range, more deaths occur in the later cohort than
in the earlier cohort. Therefore, more deaths occur in the triangle AED than
in BFE, and more deaths occur in the triangle BCF than in ABE. Because the
square ABFE can be split into two triangles BFE and ABE, both of which have
fewer deaths than their corresponding triangles have, the number of deaths
in ABFE is smaller than that in ABED and that in BCFE. Because usually
the number of person-years does not differ significantly among ABFE, ABED
and BCFE, this leads to a paradoxical result that the age-specific death rate
for the period is lower than that for either one of the two cohorts that pass
through the age interval during the period.
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Fig. 1. Lexis Diagram for one period (ABFE) and two cohorts (ABED and BCFE)

The second main point of the proof is the definition of “shift of age distribu-
tion of deaths toward older ages (or more briefly, aging of death distribution)
within a given age range.” This issue is essential when the continuous cohort
(instead of two discrete cohorts) is considered. There are possibly at least
several different definitions of the concept, including those based on central
tendency measures (e.g., rise in the mean age at death). In this note, the shift
is defined as an overall rise of survival curve, as illustrated by the three curves
in Figure 2. If the age distribution of deaths in population A is older than
that in population B, then for any age (excluding the both ends of the age
range), the proportion of all deaths above the age is greater in A than in B,
and equivalently, the proportion of all deaths below the age is smaller in A
than in B.

This may seem to be a strong condition, because the inequality has to hold
at any age. However, to my knowledge, in any of widely used model life table
systems, survival curves within the system do not cross over with each other,
as illustrated in Figure 3. This means that in the model life system, the age
distribution of deaths over the entire life span shifts toward older ages in the
manner defined above.

Figure 2 shows survival curves for three cohorts over the one-year age
range from x to x + 1. It can be viewed as a part (for example, the small
rectangle on the highest curve) of Figure 3, which covers the entire life span.
Thus the survival curves in Figure 2 are for only those who died in the age
interval, excluding all those who died outside the interval. It is assumed that
all of the three cohorts have the same number of survivors at age x and the
same number of deaths between x and x+1, but different death distributions
within the one-year age range.

Now, for further discussion, the definition of “cohort” needs to be changed
from discrete (the two parallelograms in Figure 1) to continuous (infinitely
many 45-degree diagonal lines in the parallelogram ACFD). Let the cohort
aged x at t (line EB) be called the mid-cohort, which splits the rest into
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Fig. 2. Survival curves for those who died within the one-year age interval.

earlier cohorts and later cohorts. Suppose that the number of deaths2 in the
age interval is same for all cohorts, but the age distribution of deaths shifts
toward older ages as defined above. Then the three survival curves in Figure
2, from high to low, can be considered to represent mortality experiences of a
later cohort, the mid-cohort, and an earlier cohort in Figure 1. Obviously, for
any age x+ y in the age range (y is between 0 and 1), the number of deaths
above age x+y(corresponding to l(x+y)− l(x+1), the dashed line in Figure
2) in an earlier cohort is lower than that in the mid-cohort, and the number
of deaths below age x+ y (corresponding to l(x)− l(x+ y), the dash-dot line
in Figure 2) in an later cohort is lower than that in the mid-cohort.

Figure 1 indicates, however, that for an earlier cohort, deaths above a
certain age occur during the period from t to t + 1 (e.g., on the dashed line
in Figure 1), and for a later cohort, deaths below a certain age occur in the
period (e.g., on the dash-dot line in Figure 1). (Note that the vertical dashed
(dash-dot) line at age x + y1 (age x + y2) in Figure 2 corresponds to the
number of deaths occurred on the diagonal dashed (dash-dot) line in Figure
1.) Thus, for any cohort of the both earlier and later groups, the number of
deaths that occur between t and t + 1 is smaller than the number of deaths
that would occur to the cohort during the period if the cohort has the same
death distribution as that of the mid-cohort. This means that if the death
distribution shifts toward old ages, the total number of deaths in ABFE is
smaller than the total number of deaths in ABFE that would occur if the
2 It is more accurate to call this “the single-year cohort equivalent of the density of

death” rather than just “the number of deaths,” but for simplicity, this lengthy
expression is not used in this note.
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Fig. 3. Survival curves over the human life span.

death distribution remains same as that of the mid-cohort (or actually that of
any cohort because the number of deaths for each cohort was set to be equal).

Therefore, a cohort shift of death distribution toward older ages seems to
downwardly bias the age-specific number of period deaths. In the next section,
this intuitive explanation is presented in a more formal manner.

3 Mathematical presentation

We use the regular continuous-variable Lexis framework. Let d(x, t) be the
number (density) of deaths at age x and time t, and let dc(x, u) be the number
of deaths at age x for the cohort born at time u:

dc(x, u) = d(x, u+ x). (1)

The cumulative death function from age x to x+ y is given by

F (x, y, t) =
∫ y

0

d(x+ z, t) dz for time t (2)

and

Fc(x, y, u) =
∫ y

0

d(x+ z, u) dz for cohort born at time u (3)
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We consider a Lexis square for the age interval between x and x + 1 and
the time period from t and t+ 1 (ABFE in Figure 1). The number (density)
of deaths that occur in the square is:

D(x, 1, t, 1) =
∫ t+1

t

∫ x+1

x

d(y, u) dy du (4)

Now, it is assumed that the cumulated death function from age x and x+1
is constant for all cohorts:

Fc(x, 1, u) = g (5)

for any u between t − x − 1 and t − x + 1. This assumption is needed in
order to examine effects of cohort changes in the age distribution of deaths,
independently of effects of cohort changes in the number of deaths. Obviously,
if the age distribution of age at death remain constant among cohorts, i.e., if

Fc(x, y, u1) = Fc(x, y, u2) (6)

for any y between 0 and 1 and any u1 and u2 between t−x− 1 and t−x+1,
then the total number of deaths in the Lexis square is

D(x, 1, t, 1) = g. (7)

Suppose that the distribution of age at death within the age interval shifts
toward older ages among cohorts. As described earlier, this means, by defini-
tion,

Fc(x, y, u1) < Fc(x, y, u2) if u1 > u2 (8)

for any y between 0 and 1 (excluding 0 and 1) and any u1 and u2 between
t− x− 1 and t− x+ 1.

Inequality (8) concerns deaths below age x+y. As for deaths above age
x+y, we have

g − Fc(x, y, u1) < g − Fc (x, y, u2) if u1 < u2. (9)

Cohorts that pass through the Lexis square were born between t − x − 1
and t− x+ 1 and reached age x between t− 1 and t+ 1. Let the cohort born
at t−x be called the mid-cohort. It follows from (8) and (9) that for a cohort
born after the mid-cohort, i.e. for u > t− x

Fc(x, y, u) < Fc(x, y, t− x), (10)
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and for a cohort born before the mid-cohort, i.e., for u < t− x,

g − Fc(x, y, u) < g − Fc(x, y, t− x). (11)

By separating deaths during the period into deaths to cohorts born before
and after the mid-cohort and using (10) and (11), the total number of deaths
in the Lexis square is given by

D(x, 1, t, 1) =
∫ t+1

t

∫ x+1

x

d(y, u) dy du

=
∫ 1

0

∫ 1

1−u

dc(x+ y, t− x− 1 + u) dy du

+
∫ 1

0

∫ 1−u

0

dc(x+ y, t− x+ u) dy du

=
∫ 1

0

{g − Fc(x, 1 − u, t− x− 1 + u)} du

+
∫ 1

0

Fc(x, 1 − u, t− x+ u) du

<

∫ 1

0

{g − Fc(x, 1 − u, t− x)} du+
∫ 1

0

Fc(x, 1 − u, t− x) du

= g. (12)

4 Discussion

As indicated above, if the number of deaths in an age range remains constant
among cohorts but the death distribution within the age interval shifts toward
older ages, the number of deaths in the age range for the estimation period is
smaller than the corresponding number of cohort deaths. Similarly, a cohort
shift of death distribution toward younger ages makes the number of period
deaths higher than the corresponding number of cohort deaths.

The proof was given for the age-specific number of deaths, but essentially
the same effect on the age-specific death rate is expected, because the relative
effect on the number of person-years (the denominator of age-specific death
rate) is smaller than the effect on the number of deaths (the numerator)
(Feeney 2003). This is mainly because the shift does not significantly change
the number of person-years of those who do not die in the age interval. In
most one-year age intervals, a vast majority of persons survive through the
interval.
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In addition, the number of person-years for the period is likely to be very
close to the number of person-years that would be obtained if the death dis-
tributions of all cohorts are identical to that of the mid-cohort, because losses
in ABE and gains in BFE cancel each other to some extent.3 Thus, it can
be concluded that a shift of death distribution toward older (younger) ages is
likely to bias the age-specific death rate downward (upward).

A few points about the assumptions adopted in this analytical study
may be noteworthy. The age-specific number of deaths was assumed constant
among cohorts. Admittedly, this is not realistic for two reasons. First, when
the age-specific death rate changes, usually both the number and distribution
of deaths within the age range change. When the overall mortality level de-
clines, the number of deaths tends to increase above the modal age of adult
deaths and decrease below it, shifting the mode to the right. Second, when the
distribution of deaths moves toward older or younger ages, the shift occurs
over a wide age range, thereby changing the number of deaths in each age
group. Furthermore, in practice, the tempo effect will be numerically small if
the distributional change is restricted to a narrow age range.

The purpose of this note, however, is not to produce a realistic and com-
prehensive picture of mortality change. Probably there are different pathways
through which mortality changes bias period measures, and this investigation
is an attempt to clarify the logical mechanism of one of those pathways. Thus
the cohort number of deaths was assumed constant in order to investigate
effects of cohort changes in the distribution of deaths independently of other
effects that may confound the analysis.

Concerning the shift of age distribution, this analytical study is less re-
strictive than some previous studies of tempo effects, in which linear parallel
shifts of the age curves were assumed (Ryder 1956, Inaba 1986, Bongaarts
and Feeney 1998, Feeney 2003). The assumed pattern of shift in this study
allows changes to occur in both the location and shape of distribution.

3 If l(x) is same for all of the cohorts, then for any y between 0 and 1, l(x+y) of
an earlier cohort, which passes through ABE, is smaller that of the mid-cohort.
Similarly, l(x+y) of a later cohort, which passes through BFE, is larger that of
the mid-cohort.
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Appendix

An implication of transition between two stationary age distribu-
tions for age-specific death rates

This appendix examines two artificial examples of mortality tempo effects pre-
sented by Bongaarts and Feeney (2002: Figure 3; in this volume p. 11: Figure
5) and discusses an implication for age-specific death rates of the population
dynamics assumed in the examples. In both of the examples, the hypotheti-
cal population shifts from a stationary age distribution to another stationary
distribution through a one-year transition period. Thus there are three differ-
ent periods (first stationary period, transition period, and second stationary
period), and the number of births remains unchanged throughout these three
periods. The mortality level in the second stationary period is slightly lower
than that in the first stationary period.

It seems reasonable to expect that the mortality level for the transition
period falls between those for the two stationary periods. However, the hypo-
thetical computations show that the total number of annual deaths and the
crude death rate for the transition period are substantially lower and the life
expectancy at birth is considerably higher than those for either stationary pe-
riod. For example, in one of the hypothetical illustrations, the life expectancy
rises suddenly from 70.0 years in the first stationary period to about 73 in the
transition period, and then falls to 70.25 in the second stationary period. This
anomalous trend was interpreted to show the tendency for the life expectancy
to be distorted when the mortality pattern is changing.

However, it is important to note that these examples were produced under
the special scenario of shift between two stationary age distributions. In the
hypothetical populations, tempo effects of mortality change seem to be con-
founded with effects on mortality trend of this particular type of population
dynamics. This appendix will explain why the special scenario leads to the
anomalous mortality trend.

Suppose that a population is stationary before time T and after time T +1
and the age distribution shifts between T and T+1. The number of individuals
in the age interval between x and x+ 1 at time t is given by

N(x, t) = N1(x) if t ≤ T and N(x, t) = N2(x) if t ≥ T + 1 (A.1)

where N1(x) and N2(x) are the number of individuals in the age interval
between x and x + 1 during the first stationary period and that during the
second stationary period, respectively.

It is assumed that the number of births remains constant and the force of
mortality at any age is lower in the second stationary period than in the first
stationary period. Then
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N1(x) < N2(x) for any x > 0 (A.2)

if x is not greater the highest age of the second stationary population.
The age-specific survival ratio from the age interval between x and x + 1

to the next age interval between x + 1 and x + 2 is N1(x + 1)/N1(x) for the
first stationary period, N2(x+1)/N2(x) for the second stationary period, and
N2(x+1)/N1(x) for the one-year transition period. The survival ratio for the
transition period is higher than that for the first stationary period because of
the inequality of the numerator, i.e., N2(x+ 1) > N1(x+ 1). It is higher than
that for the second stationary period as well, because of the inequality of the
denominator, i.e., N1(x) < N2(x).

The above results can be generalized to any length u of transition period
by considering the survival ratio from the age interval between x and x+1 to
the age interval between x+u and x+u+1, as far as x+u is under the highest
age of the population. Obviously, high age-specific survival ratios imply low
age-specific death rates. Thus it can be claimed that if the population shifts
between two stationary age distributions and the mortality level in the later
stationary period is lower (higher) than that in the earlier stationary period,
then age-specific death rates in the transition period tend to be lower (higher)
than those in either stationary period.

This anomalous mortality trend is due to the very special type of age
structure change, i.e., shift from a stationary population to another. Suppose
that the mortality pattern remains constant for a while, then changes in a
short period of time, and remains constant again thereafter. Usually, it will
take many years for the population to eventually become stationary. (The
number of births is assumed unchanged in this population.) However, the two
simulations adopt an unusual scenario that the population becomes stationary
immediately after some mortality change. Therefore, the high life expectancy
during the transition period in the artificial examples may be attributable
mainly to this unusual scenario, i.e., shift between two stationary age distri-
butions. It does not seem to be a typical tempo bias.




